Education Fair

semua tidak lepas dari pendidikan. pendidikan begitu penting untuk mengembangkan ketrampilan dan berpikir secara kreatif.

Begitu Pentingnya pendidikan

Pentingnya pendidikan membuat mahalnya biaya masuk sekolah.maka perlunya orang tua menabung untuk pendidikan si kecil nantinya

Pembangkit Listrik Tenaga Nuklir

Nuklir merupakan energi alternatif yang dapat membantu pasokan listrik saat ini.

Reaktor Nuklir untuk Penelitian

Reaktor nuklir untuk penelitian yang berada di laboratorium uji coba Nuklir.

Senin, 31 Januari 2011

ASTRONOMI

Astronomi, yang secara etimologi berarti "ilmu bintang" (dari Yunani: άστρο, + νόμος), adalah ilmu yang melibatkan pengamatan dan penjelasan kejadian yang terjadi di luar Bumi dan atmosfernya. Ilmu ini mempelajari asal-usul, evolusi, sifat fisik dan kimiawi benda-benda yang bisa dilihat di langit (dan di luar Bumi), juga proses yang melibatkan mereka.

Selama sebagian abad ke-20, astronomi dianggap terpilah menjadi astrometri, mekanika langit, dan astrofisika. Status tinggi sekarang yang dimiliki astrofisika bisa tercermin dalam nama jurusan universitas dan institut yang dilibatkan di penelitian astronomis: yang paling tua adalah tanpa kecuali bagian 'Astronomi' dan institut, yang paling baru cenderung memasukkan astrofisika di nama mereka, kadang-kadang mengeluarkan kata astronomi, untuk menekankan sifat penelitiannya. Selanjutnya, penelitian astrofisika, secara khususnya astrofisika teoretis, bisa dilakukan oleh orang yang berlatar belakang ilmu fisika atau matematika daripada astronomi.

Astronomi Bulan: kawah besar ini adalah Daedalus, yang dipotret kru Apollo 11 selagi mereka mengedari Bulan pada 1969. Ditemukan di tengah sisi gelap bulan Bumi, garis tengahnya sekitar 93 km

Astronomi Bulan: kawah besar ini adalah Daedalus, yang dipotret kru Apollo 11 selagi mereka mengedari Bulan pada 1969. Ditemukan di tengah sisi gelap bulan Bumi, garis tengahnya sekitar 93 km
Astronomi adalah salah satu di antara sedikit ilmu pengetahuan di mana amatir masih memainkan peran aktif, khususnya dalam hal penemuan dan pengamatan fenomena sementara. Astronomi jangan dikelirukan dengan astrologi, ilmusemu yang mengasumsikan bahwa takdir manusia dapat dikaitkan dengan letak benda-benda astronomis di langit. Meskipun memiliki asal-muasal yang sama, kedua bidang ini sangat berbeda; astronom menggunakan metode ilmiah, sedangkan astrolog tidak.

CABANG-CABANG ASTRONOMI

Astronomy dipisahkan ke dalam cabang. Perbedaan pertama di antara 'teoretis dan observational' astronomi. Pengamat menggunakan berbagai jenis alat untuk mendapatkan data tentang gejala, data yang kemudian dipergunakan oleh teoretikus untuk 'membuat' teori dan model, menerangkan pengamatan dan memperkirakan yang baru.

Bidang yang dipelajari juga dikategorikan menjadi dua cara yang berbeda: dengan 'subyek', biasanya menurut daerah angkasa (misalnya Astronomi Galaksi) atau 'masalah' (seperti pembentukan bintang atau kosmologi); atau dari cara yang dipergunakan untuk mendapatkan informasi (pada hakekatnya, daerah di mana spektrum elektromagnetik dipakai). Pembagian pertama bisa diterapkan kepada baik pengamat maupun teoretikus, tetapi pembagian kedua ini hanya berlaku bagi pengamat (dengan tak sempurna), selama teoretikus mencoba menggunakan informasi yang ada, di semua panjang gelombang, dan pengamat sering mengamati di lebih dari satu daerah spektrum.

  • Berdasarkan subyek atau masalah

    Astronomi Planet, atau Ilmu Pengetahuan Planet: setan debu Mars. Dipotret oleh NASA Global Surveyor di orbit Mars, coret gelap yang panjang terbentuk oleh gerakan gumpalan atmosfer Mars yang berputar-putar (dengan kesamaan ke angin tornado darat). Setan debu (tempat hitam) mendaki tembok kawah. Coret di setengah tangan benar gambar adalah bukit pasir di lantai kawah.
    Astrometri: penelitian posisi benda di langit dan perubahan posisi mereka. Mendefinisikan sistem koordinat yang dipakai dan kinematika dari benda-benda di galaksi kita.
    Kosmologi: penelitian alam semesta sebagai seluruh dan evolusinya.
    Fisika galaksi: penelitian struktur dan bagian galaksi kita dan galaksi lain.
    Astronomi ekstragalaksi: penelitian benda (sebagian besar galaksi) di luar galaksi kita.
    Pembentukan galaksi dan evolusi: penelitian pembentukan galaksi, dan evolusi mereka.
    Ilmu planet: penelitian planet dan tata surya.
    Fisika bintang: penelitian struktur bintang.
    Evolusi bintang: penelitian evolusi bintang dari pembentukan mereka sampai akhir mereka sebagai bintang sisa.
    Pembentukan bintang: penelitian kondisi dan proses yang menyebabkan pembentukan bintang di dalam awan gas, dan proses pembentukan itu sendiri. 
  • Cara-cara mendapatkan informasi

    Dalam astronomi, informasi sebagian besar didapat dari deteksi dan analisis radiasi elektromagnetik, foton, tetapi informasi juga dibawa oleh sinar kosmik, neutrino, dan, dalam waktu dekat, gelombang gravitasional (lihat LIGO dan LISA). Pembagian astronomi secara tradisional dibuat berdasarkan rentang daerah spektrum elektromagnetik yang diamati:
    Astronomi optikal menunjuk kepada teknik yang dipakai untuk mengetahui dan menganalisa cahaya pada daerah sekitar panjang gelombang yang bisa dideteksi oleh mata (sekitar 400 - 800 nm). Alat yang paling biasa dipakai adalah teleskop, dengan CCD dan spektrograf.
    Astronomi inframerah mengenai deteksi radiasi infra merah (panjang gelombangnya lebih panjang daripada cahaya merah). Alat yang digunakan hampir sama dengan astronomi optik dilengkapi peralatan untuk mendeteksi foton infra merah. Teleskop Ruang Angkasa digunakan untuk mengatasi gangguan pengamatan yang berasal dari atmosfer.
    Astronomi radio memakai alat yang betul-betul berbeda untuk mendeteksi radiasi dengan panjang gelombang mm sampai cm. Penerimanya mirip dengan yang dipakai dalam pengiriman siaran radio (yang memakai radiasi dari panjang gelombang itu).
    Astronomi Ekstragalaktik: lensa gravitasi. Gambar dari Teleskop Ruang Angkasa Hubble ini menunjukkan beberapa obyek yang terbentuk dengan putaran yang biru yang sebetulnya adalah beberapa tampilan dari galaksi yang sama. Mereka sudah digandakan oleh efek lensa gravitasi kelompok galaksi yang berwarna kuning, bulat panjang dan spiral di dekat pusat foto. Pelensaan gravitasi dihasilkan oleh bidang gravitasi kelompok yang luar biasa masif sehingga mampu melengkungkan cahaya. Beberapa akibatnya adalah memperbesar ukuran obyek yang dilensakan, menjadikan terang dan mengubah tampilan benda yang lebih jauh.
    Astronomi optik dan radio bisa dilakukan di observatorium landas bumi, karena atmosfer transparan pada panjang gelombang itu. Cahaya infra merah benar-benar diserap oleh uap air, sehingga observatorium infra merah terpaksa ditempatkan di tempat kering yang tinggi atau di angkasa.
Atmosfer kedap pada panjang gelombang astronomi sinar-X, astronomi sinar-gamma, astronomi ultra violet dan, kecuali sedikit "jendela" dari panjang gelombang, astronomi infra merah jauh, oleh sebab itu pengamatan bisa dilakukan hanya dari balon atau observatorium luar angkasa.
Astronomi Planet, atau Ilmu Pengetahuan Planet: setan debu Mars. Dipotret oleh NASA Global Surveyor di orbit Mars, coret gelap yang panjang terbentuk oleh gerakan gumpalan atmosfer Mars yang berputar-putar (dengan kesamaan ke angin tornado darat). Setan debu (tempat hitam) mendaki tembok kawah. Coret di setengah tangan benar gambar adalah bukit pasir di lantai kawah.

ASTRONOMI DI INDONESIA

Masyarakat tradisional

Seperti kebudayaan-kebudayaan lain di dunia, masyarakat asli Indonesia sudah sejak lama menaruh perhatian pada langit. Keterbatasan pengetahuan membuat kebanyakan pengamatan dilakukan untuk keperluan astrologi. Pada tingkatan praktis, pengamatan langit digunakan dalam pertanian dan pelayaran. Dalam masyarakat Jawa misalnya dikenal pranatamangsa, yaitu peramalan musim berdasarkan gejala-gejala alam, dan umumnya berhubungan dengan tata letak bintang di langit.

Nama-nama asli daerah untuk penyebutan obyek-obyek astronomi juga memperkuat fakta bahwa pengamatan langit telah dilakukan oleh masyarakat tradisional sejak lama. Lintang Waluku adalah sebutan masyarakat Jawa tradisional untuk menyebut tiga bintang dalam sabuk Orion dan digunakan sebagai pertanda dimulainya masa tanam. Gubuk Penceng adalah nama lain untuk rasi Salib Selatan dan digunakan oleh para nelayan Jawa tradisional dalam menentukan arah selatan. Joko Belek adalah sebutan untuk Planet Mars, sementara lintang kemukus adalah sebutan untuk komet. Sebuah bentangan nebula raksasa dengan fitur gelap di tengahnya disebut sebagai Bimasakti.

Masa modern

Pelaut-pelaut Belanda pertama yang mencapai Indonesia pada akhir abad-16 dan awal abad-17 adalah juga astronom-astronom ulung, seperti Pieter Dirkszoon Keyser dan Frederick de Houtman. Lebih 150 tahun kemudian setelah era penjelajahan tersebut, misionaris Belanda kelahiran Jerman yang menaruh perhatian pada bidang astronomi, Johan Maurits Mohr, mendirikan observatorium pertamanya di Batavia pada 1765. James Cook, seorang penjelajah Inggris, dan Louis Antoine de Bougainville, seorang penjelajah Perancis, bahkan pernah mengunjungi Mohr di observatoriumnya untuk mengamati transit Planet Venus pada 1769[1].

Ilmu astronomi modern makin berkembang setelah pata tahun 1928, atas kebaikan Karel Albert Rudolf Bosscha, seorang pengusaha perkebunan teh di daerah Malabar, dipasang beberapa teleskop besar di Lembang, Jawa Barat, yang menjadi cikal bakal Observatorium Bosscha, sebagaimana dikenal pada masa kini.

Penelitian astronomi yang dilakukan pada masa kolonial diarahkan pada pengamatan bintang ganda visual dan survei langit di belahan selatan ekuator bumi, karena pada masa tersebut belum banyak observatorium untuk pengamatan daerah selatan ekuator.

Setelah Indonesia memperoleh kemerdekaan, bukan berarti penelitian astronomi terhenti, karena penelitian astronomi masih dilakukan dan mulai adanya rintisan astronom pribumi. Untuk membuka jalan kemajuan astronomi di Indonesia, pada tahun 1959, secara resmi dibuka Pendidikan Astronomi di Institut Teknologi Bandung.

Pendidikan Astronomi di Indonesia secara formal dilakukan di Departemen Astronomi, Institut Teknologi Bandung. Departemen Astronomi berada dalam lingkungan Fakultas Matematika dan Ilmu Pengetahuan Alam (FMIPA) dan secara langsung terkait dengan penelitian dan pengamatan di Observatorium Bosscha.

Lembaga negara yang terlibat secara aktif dalam perkembangan astronomi di Indonesia adalah Lembaga Penerbangan dan Antariksa Nasional (LAPAN).

Selain pendidikan formal, terdapat wadah informal penggemar astronomi, seperti Himpunan Astronomi Amatir Jakarta, serta tersedianya planetarium di Taman Ismail Marzuki, Jakarta yang selalu ramai dipadati pengunjung.

Perkembangan astronomi di Indonesia mengalami pertumbuhan yang pesat, dan mendapat pengakuan di tingkat Internasional, seiring dengan semakin banyaknya pakar astronomi asal Indonesia yang terlibat dalam kegiatan astronomi di seluruh dunia, serta banyaknya siswa SMU yang memenangi Olimpiade Astronomi Internasional maupun Olimpiade Astronomi Asia Pasific.

Demikian juga dengan adanya salah seorang putra terbaik bangsa dalam bidang astronomi di tingkat Internasional, yaitu Profesor Bambang Hidayat yang pernah menjabat sebagai vice president IAU (International Astronomical Union).


sumber: id.wikipedia

Fisika Atom

Fisika atom adalah fisika "hull" elektron atom.

Orang awam biasanya menghubungkan istilah fisika atom dengan tenaga nuklir dan bom nuklir, dikarenkan penggunaan sinonim dari kata atom dan nuklir dalam standar Inggris. Namun, fisikawan membedakan antara fisika atom (berhadapan dengan efek hull elektron dan spin keseluruhan nukleus dan muatan listrik) dan fisika nuklir (berhadapan dengan gaya dalam nukleus atom dan reaksi yang mengubah, menyatukan atau memisahkan mereka).

Awal dari fisika atom ditandai dengan penemuan dan penelitian garis spektral. Hal ini menggambarkan garis yang jelas dalam spektrum panas dan cahaya.

Penelitian dari garis-garis ini menuju ke model atom Bohr dan sampai ke pengertian kita sekarang tentang hull elektron atom seperti dijelaskan oleh model atom orbital yang merupakan dasar dari seluruh pemahaman kimia. Kesimpulan ini tidak secara langsung, tetapi merupakan hasil dari riset lebih dari satu abad, yang telah sukses dalam menaruh kimia sebagai suatu dasar dan juga memberikan banyak aplikasi baru.

Kutipan Kasih Sayang

The greatest degree of inner tranquility comes from the development of love and compassion. The more we care for the happiness of others, the greater is our own sense of well-being.

- Tenzin Gyatso, 14th Dalai Lama

   Power without love is reckless and abusive, and love without power is sentimental and anemic.

- Martin Luther King, Jr.

  A life lived in love will never be dull.

- Leo Buscaglia

   Love many things, for therein lies the true strength, and whosoever loves much performs much, and can          accomplish much, and what is done in love is done well.

- Vincent van Gogh

   Life is meaningless only if we allow it to be. Each of us has the power to give life meaning, to make our time and our bodies and our words into instruments of love and hope.

- Tom Head

   The more I think it over, the more I feel that there is nothing more truly artistic than to love people.

- Vincent van Gogh

   Your task is not to seek love, but merely to seek & find all the barriers within yourself that you have built against it.

- Rumi

   Love’s greatest gift is its ability to make everything it touches sacred.

- Barbara De Angelis

   Why love if losing hurts so much? We love to know that we are not alone.

- C. S. Lewis

    Keep feeling the need for being first. But I want you to be the first in love. I want you to be the first in moral excellence. I want you to be the first in generosity.

- Martin Luther King, Jr.

   We have before us the glorious opportunity to inject a new dimension of love into the veins of our civilization,

- Martin Luther King, Jr.

   We look forward to the time when the Power of Love will replace the Love of Power. Then will our world know the blessings of peace.

- William E. Gladstone

    Every time we love, every time we give, it’s Christmas.

- Dale Evans

    Love and kindness are never wasted. They always make a difference. They bless the one who receives them, and they bless you, the giver.

- Barbara De Angelis

   Wake at dawn with a winged heart and give thanks for another day of loving.

Kamis, 27 Januari 2011

Mekanika Kuantum

Mekanika kuantum adalah cabang dasar fisika yang menggantikan mekanika klasik pada tataran atom dan subatom. Ilmu ini memberikan kerangka matematika untuk berbagai cabang fisika dan kimia, termasuk fisika atom, fisika molekular, kimia komputasi, kimia kuantum, fisika partikel, dan fisika nuklir. Mekanika kuantum adalah bagian dari teori medan kuantum dan fisika kuantum umumnya, yang, bersama relativitas umum, merupakan salah satu pilar fisika modern. Dasar dari mekanika kuantum adalah bahwa energi itu tidak kontinyu, tapi diskrit -- berupa 'paket' atau 'kuanta'. Konsep ini cukup revolusioner, karena bertentangan dengan fisika klasik yang berasumsi bahwa energi itu berkesinambungan.



Sejarah


Pada tahun 1900, Max Planck memperkenalkan ide bahwa energi dapat dibagi-bagi menjadi beberapa paket atau kuanta. Ide ini secara khusus digunakan untuk menjelaskan sebaran intensitas radiasi yang dipancarkan oleh benda hitam. Pada tahun 1905, Albert Einsteinmenjelaskan efek fotoelektrik dengan menyimpulkan bahwa energi cahaya datang dalam bentuk kuanta yang disebut foton. Pada tahun 1913,Niels Bohr menjelaskan garis spektrum dari atom hidrogen, lagi dengan menggunakan kuantisasi. Pada tahun 1924, Louis de Brogliememberikan teorinya tentang gelombang benda.
Teori-teori di atas, meskipun sukses, tetapi sangat fenomenologikal: tidak ada penjelasan jelas untuk kuantisasi. Mereka dikenal sebagai teori kuantum lama.
Frase "Fisika kuantum" pertama kali digunakan oleh Johnston dalam tulisannya Planck's Universe in Light of Modern Physics (Alam Planck dalam cahaya Fisika Modern).
Mekanika kuantum modern lahir pada tahun 1925, ketika Werner Karl Heisenberg mengembangkan mekanika matriks dan Erwin Schrödinger menemukan mekanika gelombang dan persamaan Schrödinger. Schrödinger beberapa kali menunjukkan bahwa kedua pendekatan tersebut sama.
Heisenberg merumuskan prinsip ketidakpastiannya pada tahun 1927, dan interpretasi Kopenhagen terbentuk dalam waktu yang hampir bersamaan. Pada 1927, Paul Diracmenggabungkan mekanika kuantum dengan relativitas khusus. Dia juga membuka penggunaan teori operator, termasuk notasi bra-ket yang berpengaruh. Pada tahun 1932, Neumann Janos merumuskan dasar matematika yang kuat untuk mekanika kuantum sebagai teori operator.
Bidang kimia kuantum dibuka oleh Walter Heitler dan Fritz London, yang mempublikasikan penelitian ikatan kovalen dari molekul hidrogen pada tahun 1927. Kimia kuantum beberapa kali dikembangkan oleh pekerja dalam jumlah besar, termasuk kimiawan Amerika Linus Pauling.
Berawal pada 1927, percobaan dimulai untuk menggunakan mekanika kuantum ke dalam bidang di luar partikel satuan, yang menghasilkan teori medan kuantum. Pekerja awal dalam bidang ini termasuk Dirac, Wolfgang Pauli, Victor Weisskopf dan Pascaul Jordan. Bidang riset area ini dikembangkan dalam formulasi elektrodinamika kuantum oleh Richard Feynman,Freeman Dyson, Julian Schwinger, dan Tomonaga Shin'ichirō pada tahun 1940-an. Elektrodinamika kuantum adalah teori kuantum elektron, positron, dan Medan elektromagnetik, dan berlaku sebagai contoh untuk teori kuantum berikutnya.
Interpretasi banyak dunia diformulasikan oleh Hugh Everett pada tahun 1956.
Teori Kromodinamika kuantum diformulasikan pada awal 1960an. Teori yang kita kenal sekarang ini diformulasikan oleh Polizter, Gross and Wilzcek pada tahun 1975. Pengembangan awal oleh Schwinger, Peter Higgs, Goldstone dan lain-lain. Sheldon Lee Glashow, Steven Weinberg dan Abdus Salam menunjukan secara independen bagaimana gaya nuklir lemah dan elektrodinamika kuantum dapat digabungkan menjadi satu gaya lemah elektro.

Eksperimen Penemu


  • Eksperimen celah-ganda Thomas Young membuktikan sifat gelombang dari cahaya. (sekitar 1805)
  • Henri Becquerel menemukan radioaktivitas (1896)
  • Joseph John Thomson - eksperimen tabung sinar kathoda (menemukan elektron dan muatan negatifnya) (1897)
  • Penelitian radiasi benda hitam antara 1850 dan 1900, yang tidak dapat dijelaskan tanpa konsep kuantum.
  • Robert Millikan - eksperimen tetesan oli, membuktikan bahwa muatan listrik terjadi dalam kuanta (seluruh unit), (1909)
  • Ernest Rutherford - eksperimen lembaran emas menggagalkan model puding plum atom yang menyarankan bahwa muatan positif dan masa atom tersebar dengan rata. (1911)
  • Otto Stern dan Walter Gerlach melakukan eksperimen Stern-Gerlach, yang menunjukkan sifat kuantisasi partikel spin (1920)
  • Clyde L. Cowan dan Frederick Reines meyakinkan keberadaan neutrino dalam eksperimen neutrino (1955)

Bukti dari mekanika kuantum

Mekanika kuantum sangat berguna untuk menjelaskan perilaku atom dan partikel subatomik seperti proton, neutron dan elektron yang tidak mematuhi hukum-hukum fisika klasik. Atombiasanya digambarkan sebagai sebuah sistem di mana elektron (yang bermuatan listrik negatif) beredar seputar nukleus atom (yang bermuatan listrik positif). Menurut mekanika kuantum, ketika sebuah elektron berpindah dari tingkat energi yang lebih tinggi (misalnya dari n=2 atau kulit atom ke-2 ) ke tingkat energi yang lebih rendah (misalnya n=1 atau kulit atom tingkat ke-1), energi berupa sebuah partikel cahaya yang disebut foton, dilepaskan. Energi yang dilepaskan dapat dirumuskan sbb:
E = hf\!
keterangan:
  • E\! adalah energi (J)
  • h\! adalah tetapan Planck, h = 6.63 \times 10^{-34}\! (Js), dan
  • f\! adalah frekuensi dari cahaya (Hz)
Dalam spektrometer massa, telah dibuktikan bahwa garis-garis spektrum dari atom yang di-ionisasi tidak kontinyu, hanya pada frekuensi/panjang gelombang tertentu garis-garis spektrum dapat dilihat. Ini adalah salah satu bukti dari teori mekanika kuantum.

Densitas kebolehjadian dari fungsi gelombang
sebuah elektron atom hidrogen dalam mekanika kwantum
sumber: id.wikipedia

Fisika Plasma


Fisika plasma adalah salah satu bidang dari fisika yang mempelajari gas terionisasi yang dikenal sebagai plasma.Dalam fisika dan kimia, plasma (juga disebut gas terionisasi karena terbentuk dari benda bersifat gas yang terionisasi oleh panas) adalah keadaan benda fase-gas berenergi, yang sering disebut sebagai "keadaan benda keempat", yang beberapa atau semua elektron di orbit atom terluar telah terpisah dari atom atau molekul. Hasilnya adalah sebuah koleksi ion dan elektron yang tidak lagi terikat satu sama lain. Karena partikel-partikel ini terionisasi (bermuatan), gas ini bertingkah laku lain dari gas biasa, contohnya, kehadiran medan elektromagnetik. Keadaan benda ini pertama kali diidentifikasi oleh Sir William Crookes pada 1879, dan disebut "plasma" oleh Irving Langmuir pada 1928.
Perlakuan "fluid" biasa datang dari kombinasi persamaan Navier Stokes dinamika fluid dan persamaan MaxwellElektromagnetisme. Hasil dari himpunan persamaan ini, dengan perkiraan yang tepat, disebut Magnetohidrodinamika (atau MHD pendeknya).
Fisika plasma sangat penting dalam astrofisika. Banyak objek-objek astronomi, termasuk bintang, piringan accretion, nebula, dan interstellar medium, terdiri dari plasma. Ia juga penting dalam ilmu aerodinamika seperti hipersonik, karena pada kecepatan hipersonik, interaksi dari gelombang kejut (shockwave) dan lapisan batasan menciptakan panas yang mengionisasi udara di sekitar badan pesawat tersebut. Ini terjadi, contohnya, pada saat pesawat ulang-alik masuk kembali ke atmosfir bumi. Fisika plasma juga digunakan dalam mempelajari fusi nuklir karena banyak reaksi fusi terjadi dalam plasma.Plasma dapat pula digunakan pada TV Plasma dan lampu neon

sumber: id.wikipedia 

Ki Hadjar Dewantara




Raden Mas Soewardi Soerjaningrat (EYD: Suwardi Suryaningrat, sejak 1922 menjadi Ki Hadjar Dewantara, EYD: Ki Hajar Dewantara, beberapa menuliskan bunyi bahasa Jawanya dengan Ki Hajar Dewantoro; lahir di Yogyakarta, 2 Mei 1889 – meninggal di Yogyakarta, 26 April 1959 pada umur 69 tahun; selanjutnya disingkat sebagai "Soewardi" atau "KHD") adalah aktivis pergerakankemerdekaan Indonesia, kolumnis, politisi, dan pelopor pendidikan bagi kaum pribumi Indonesia dari zaman penjajahan Belanda. Ia adalah pendiri Perguruan Taman Siswa, suatu lembaga pendidikan yang memberikan kesempatan bagi para pribumi jelata untuk bisa memperoleh hak pendidikan seperti halnya para priyayi maupun orang-orang Belanda.

Tanggal kelahirannya sekarang diperingati di Indonesia sebagai Hari Pendidikan Nasional. Bagian dari semboyan ciptaannya, tut wuri handayani, menjadi slogan Departemen Pendidikan Nasional. Namanya diabadikan sebagai salah sebuah nama kapal perang Indonesia,KRI Ki Hajar Dewantara. Potret dirinya diabadikan pada uang kertas pecahan 20.000 rupiah.

MASA MUDA DAN AWAL KARIER
Soewardi berasal dari lingkungan keluarga Keraton Yogyakarta. Ia menamatkan pendidikan dasar di ELS (Sekolah Dasar Eropa/Belanda). Kemudian sempat melanjut ke STOVIA (Sekolah Dokter Bumiputera), tapi tidak sampai tamat karena sakit. Kemudian ia bekerja sebagai penulis dan wartawan di beberapa surat kabar, antara lain, Sediotomo, Midden Java, De Expres, Oetoesan Hindia, Kaoem Moeda, Tjahaja Timoer, dan Poesara. Pada masanya, ia tergolong penulis handal. Tulisan-tulisannya komunikatif dan tajam dengan semangat antikolonial.

AKTIVITAS PERGERAKAN

Selain ulet sebagai seorang wartawan muda, ia juga aktif dalam organisasi sosial dan politik. Sejak berdirinya Boedi Oetomo (BO) tahun 1908, ia aktif di seksi propaganda untuk menyosialisasikan dan menggugah kesadaran masyarakat Indonesia (terutama Jawa) pada waktu itu mengenai pentingnya persatuan dan kesatuan dalam berbangsa dan bernegara. Kongres pertama BO di Yogyakarta juga diorganisasi olehnya.
Soewardi muda juga menjadi anggota organisasi Insulinde, suatu organisasi multietnik yang didominasi kaum Indo yang memperjuangkan pemerintahan sendiri di Hindia Belanda, atas pengaruh Ernest Douwes Dekker (DD). Ketika kemudian DD mendirikan Indische Partij, Soewardi diajaknya pula.

ALS IK EENS NEDERLANDER WAS
Sewaktu pemerintah Hindia Belanda berniat mengumpulkan sumbangan dari warga, termasuk pribumi, untuk perayaan kemerdekaan Belanda dari Perancispada tahun 1913, timbul reaksi kritis dari kalangan nasionalis, termasuk Soewardi. Ia kemudian menulis "Een voor Allen maar Ook Allen voor Een" atau "Satu untuk Semua, tetapi Semua untuk Satu Juga". Namun kolom KHD yang paling terkenal adalah "Seandainya Aku Seorang Belanda" (judul asli: "Als ik eens Nederlander was"), dimuat dalam surat kabar De Expres pimpinan DD, tahun 1913. Isi artikel ini terasa pedas sekali di kalangan pejabat Hindia Belanda. Kutipan tulisan tersebut antara lain sebagai berikut.
"Sekiranya aku seorang Belanda, aku tidak akan menyelenggarakan pesta-pesta kemerdekaan di negeri yang telah kita rampas sendiri kemerdekaannya. Sejajar dengan jalan pikiran itu, bukan saja tidak adil, tetapi juga tidak pantas untuk menyuruh si inlander memberikan sumbangan untuk dana perayaan itu. Ide untuk menyelenggaraan perayaan itu saja sudah menghina mereka, dan sekarang kita keruk pula kantongnya. Ayo teruskan saja penghinaan lahir dan batin itu! Kalau aku seorang Belanda, hal yang terutama menyinggung perasaanku dan kawan-kawan sebangsaku ialah kenyataan bahwa inlander diharuskan ikut mengongkosi suatu kegiatan yang tidak ada kepentingan sedikit pun baginya".
Beberapa pejabat Belanda menyangsikan tulisan ini asli dibuat oleh Soewardi sendiri karena gaya bahasanya yang berbeda dari tulisan-tulisannya sebelum ini. Kalaupun benar ia yang menulis, mereka menganggap DD berperan dalam memanas-manasi Soewardi untuk menulis dengan gaya demikian.
Akibat tulisan ini ia ditangkap atas persetujuan Gubernur Jenderal Idenburg dan akan diasingkan ke Pulau Bangka (atas permintaan sendiri). Namun demikian kedua rekannya, DD danTjipto Mangoenkoesoemo, memprotes dan akhirnya mereka bertiga diasingkan ke Belanda (1913). Ketiga tokoh ini dikenal sebagai "Tiga Serangkai". Soewardi kala itu baru berusia 24 tahun.

DALAM PENGASINGAN

Dalam pengasingan di Belanda, Soewardi aktif dalam organisasi para pelajar asal Indonesia, Indische Vereeniging (Perhimpunan Hindia).
Di sinilah ia kemudian merintis cita-citanya memajukan kaum pribumi dengan belajar ilmu pendidikan hingga memperoleh Europeesche Akte, suatu ijazah pendidikan yang bergengsi yang kelak menjadi pijakan dalam mendirikan lembaga pendidikan yang didirikannya. Dalam studinya ini Soewardi terpikat pada ide-ide sejumlah tokoh pendidikan Barat, seperti Froebeldan Montessori, serta pergerakan pendidikan India, Santiniketan, oleh keluarga Tagore. Pengaruh-pengaruh inilah yang mendasarinya dalam mengembangkan sistem pendidikannya sendiri.

TAMAN SISWA

Soewardi kembali ke Indonesia pada bulan September 1919. Segera kemudian ia bergabung dalam sekolah binaan saudaranya. Pengalaman mengajar ini kemudian digunakannya untuk mengembangkan konsep mengajar bagi sekolah yang ia dirikan pada tanggal 3 Juli 1922: Nationaal Onderwijs Instituut Tamansiswa atau Perguruan Nasional Tamansiswa. Saat ia genap berusia 40 tahun menurut hitungan penanggalan Jawa, ia mengganti namanya menjadi Ki Hadjar Dewantara. Ia tidak lagi menggunakan gelar kebangsawanan di depan namanya. Hal ini dimaksudkan supaya ia dapat bebas dekat dengan rakyat, baik secara fisik maupun jiwa.
Semboyan dalam sistem pendidikan yang dipakainya kini sangat dikenal di kalangan pendidikan Indonesia. Secara utuh, semboyan itu dalam bahasa Jawa berbunyi ing ngarsa sung tulada, ing madya mangun karsa, tut wuri handayani. ("di depan menjadi teladan, di tengah membangun semangat, dari belakang mendukung"). Semboyan ini masih tetap dipakai dalam dunia pendidikan rakyat Indonesia, terlebih di sekolah-sekolah Perguruan Tamansiswa.

 PENGABDIAN DI MASA INDONESIA MERDEKA


Dalam kabinet pertama Republik Indonesia, KHD diangkat menjadi Menteri Pengajaran Indonesia (posnya disebut sebagai Menteri Pendidikan, Pengajaran dan Kebudayaan) yang pertama. Pada tahun 1957 ia mendapat gelar doktor kehormatan (doctor honoris causa, Dr.H.C.) dari universitas tertua Indonesia, Universitas Gadjah Mada. Atas jasa-jasanya dalam merintis pendidikan umum, ia dinyatakan sebagai Bapak Pendidikan Nasional Indonesia dan hari kelahirannya dijadikan Hari Pendidikan Nasional (Surat Keputusan Presiden RI no. 305 tahun 1959, tanggal 28 November 1959).
Ia meninggal dunia di Yogyakarta tanggal 26 April 1959.
sumber: id.wikipwdia 

GALILEO GALILEI, Bapak Astronomi Dunia


(1564-1642)
Ilmuwan Itali besar ini mungkin lebih bertanggung jawab terhadap perkembangan metode ilmiah dari siapa pun juga. Galileo lahir di Pisa, tahun 1564. Selagi muda belajar di Universitas Pisa tetapi mandek karena urusan keuangan. Meski begitu tahun 1589 dia mampu dapat posisi pengajar di universitas itu. Beberapa tahun kemudian dia bergabung dengan Universitas Padua dan menetap di sana hingga tahun 1610. Dalam masa inilah dia menciptakan tumpukan penemuan-penemuan ilmiah.

Sumbangan penting pertamanya di bidang mekanika. Aristoteles mengajarkan, benda yang lebih berat jatuh lebih cepat ketimbang benda yang lebih enteng, dan bergenerasi-generasi kaum cerdik pandai menelan pendapat filosof Yunani yang besar pengaruh ini. Tetapi, Galileo memutuskan mencoba dulu benar-tidaknya, dan lewat serentetan eksperimen dia berkesimpulan bahwa Aristoteles keliru. Yang benar adalah, baik benda berat maupun enteng jatuh pada kecepatan yang sama kecuali sampai batas mereka berkurang kecepatannya akibat pergeseran udara. (Kebetulan, kebiasaan Galileo melakukan percobaan melempar benda dari menara Pisa tampaknya tanpa sadar).

Mengetahui hal ini, Galileo mengambil langkah-langkah lebih lanjut. Dengan hati-hati dia mengukur jarak jatuhnya benda pada saat yang ditentukan dan mendapat bukti bahwa jarak yang dilalui oleh benda yang jatuh adalah berbanding seimbang dengan jumlah detik kwadrat jatuhnya benda. Penemuan ini (yang berarti penyeragaman percepatan) memiliki arti penting tersendiri. Bahkan lebih penting lagi Galileo berkemampuan menghimpun hasil penemuannya dengan formula matematik. Penggunaan yang luas formula matematik dan metode matematik merupakan sifat penting dari ilmu pengetahuan modern.

Sumbangan besar Galileo lainnya ialah penemuannya mengenai hukum kelembaman. Sebelumnya, orang percaya bahwa benda bergerak dengan sendirinya cenderung menjadi makin pelan dan sepenuhnya berhenti kalau saja tidak ada tenaga yang menambah kekuatan agar terus bergerak. Tetapi percobaan-percobaan Galileo membuktikan bahwa anggapan itu keliru. Bilamana kekuatan melambat seperti misalnya pergeseran, dapat dihilangkan, benda bergerak cenderung tetap bergerak tanpa batas. Ini merupakan prinsip penting yang telah berulang kali ditegaskan oleh Newton dan digabungkan dengan sistemnya sendiri sebagai hukum gerak pertama salah satu prinsip vital dalam ilmu pengetahuan.
Menara miring Pisa yang dianggap digunakan oleh Galileo mendemonstrasikan hukum-hukum mengenai jatuhnya sesuatu benda
Penemuan Galileo yang paling masyhur adalah di bidang astronomi. Teori perbintangan di awal tahun 1600-an berada dalam situasi yang tak menentu. Terjadi selisih pendapat antara penganut teori Copernicus yang matahari-sentris dan penganut teori yang lebih lama, yang bumi-sentris. Sekitar tahun 1609 Galileo menyatakan kepercayaannya bahwa Copernicus berada di pihak yang benar, tetapi waktu itu dia tidak tahu cara membuktikannya. Di tahun 1609, Galileo dengar kabar bahwa teleskop diketemukan orang di Negeri Belanda. Meskipun Galileo hanya mendengar samar-samar saja mengenai peralatan itu, tetapi berkat kegeniusannya dia mampu menciptakan sendiri teleskop. Dengan alat baru ini dia mengalihkan perhatiannya ke langit dan hanya dalam setahun dia sudah berhasil membikin serentetan penemuan besar.
Pada halaman ini Galileo pertama kali menulis tentang pengamatan bulan dari planet Jupiter. Pengamatan inilah yang menjungkirbalikkan kaidah bahwa seluruh benda langit harus mengitari Bumi. Galileo menulisnya secara lengkap tentang hal ini dalam Sidereus Nuncius pada bulan Maret 1610.
Dilihatnya bulan itu tidaklah rata melainkan benjol-benjol, penuh kawah dan gunung-gunung. Benda-benda langit, kesimpulannya, tidaklah rata serta licin melainkan tak beraturan seperti halnya wajah bumi. Ditatapnya Bima Sakti dan tampak olehnya bahwa dia itu bukanlah semacam kabut samasekali melainkan terdiri dari sejumlah besar bintang-bintang yang dengan mata telanjang memang seperti teraduk dan membaur satu sama lain.

Kemudian diincarnya planit-planit dan tampaklah olehnya Saturnus bagaikan dilingkari gelang. Teleskopnya melirik Yupiter dan tahulah dia ada empat buah bulan berputar-putar mengelilingi planit itu. Di sini terang-benderanglah baginya bahwa benda-benda angkasa dapat berputar mengitari sebuah planit selain bumi. Keasyikannya menjadi-jadi: ditatapnya sang surya dan tampak olehnya ada bintik-bintik dalam wajahnya. Memang ada orang lain sebelumnya yang juga melihat bintik-bintik ini, tetapi Galileo menerbitkan hasil penemuannya dengan cara yang lebih efektif dan menempatkan masalah bintik-bintik matahari itu menjadi perhatian dunia ilmu pengetahuan. Selanjutnya, penelitiannya beralih ke planit Venus yang memiliki jangka serupa benar dengan jangka bulan. Ini merupakan bagian dari bukti penting yang mengukuhkan teori Copernicus bahwa bumi dan semua planit lainnya berputar mengelilingi matahari.
Ilustrasi dari hukum daya pengungkit Galileo dipetik dari buku Galileo ‘Perbincangan Matematik dan Peragaan’
Penemuan teleskop dan serentetan penemuan ini melempar Galileo ke atas tangga kemasyhuran. Sementara itu, dukungannya terhadap teori Copernicus menyebabkan dia berhadapan dengan kalangan gereja yang menentangnya habis-habisan. Pertentangan gereja ini mencapai puncaknya di tahun 1616: dia diperintahkan menahan diri dari menyebarkan hipotesa Copernicus. Galileo merasa tergencet dengan pembatasan ini selama bertahun-tahun. Baru sesudah Paus meninggal tahun 1623, dia digantikan oleh orang yang mengagumi Galileo. Tahun berikutnya, Paus baru ini –Urban VIII– memberi pertanda walau samar-samar bahwa larangan buat Galileo tidak lagi dipaksakan.

Enam tahun berikutnya Galileo menghabiskan waktu menyusun karya ilmiahnya yang penting Dialog Tentang Dua Sistem Penting Dunia. Buku ini merupakan peragaan hebat hal-hal yang menyangkut dukungan terhadap teori Copernicus dan buku ini diterbitkan tahun 1632 dengan ijin sensor khusus dari gereja. Meskipun begitu, penguasa-penguasa gereja menanggapi dengan sikap berang tatkala buku terbit dan Galileo langsung diseret ke muka Pengadilan Agama di Roma dengan tuduhan melanggar larangan tahun 1616.

Tetapi jelas, banyak pembesar-pembesar gereja tidak senang dengan keputusan menghukum seorang sarjana kenamaan. Bahkan dibawah hukum gereja saat itu, kasus Galileo dipertanyakan dan dia cuma dijatuhi hukuman enteng. Galileo tidak dijebloskan ke dalam bui tetapi sekedar kena tahanan rumah di rumahnya sendiri yang cukup enak di sebuah villa di Arcetri. Teorinya dia tidak boleh terima tamu, tetapi nyatanya aturan itu tidak dilaksanakan sebagaimana mestinya. Hukuman lain terhadapnya hanyalah suatu permintaarn agar dia secara terbuka mencabut kembali pendapatnya bahwa bumi berputar mengelilingi matahari. Ilmuwan berumur 69 tahun ini melaksanakannya di depan pengadilan terbuka. (Ada ceritera masyhur yang tidak tentu benarnya bahwa sehabis Galileo menarik lagi pendapatnya dia menunduk ke bumi dan berbisik pelan, “Tengok, dia masih terus bergerak!”). Di kota Arcetri dia meneruskan kerja tulisnya di bidang mekanika. Galileo meninggal tahun 1642.

Sumbangan besar Galileo terhadap kemajuan ilmu pengetahuan sudah lama dikenal. Arti penting peranannya terletak pada penemuan-penemuan ilmiah seperti hukum kelembaman, penemuan teleskopnya, pengamatan bidang astronominya dan kegeniusannya membuktikan hipotesa Copernicus. Dan yang lebih penting adalah peranannya dalam hal pengembangan metodologi ilmu pengetahuan. Umumnya para filosof alam mendasarkan pendapatnya pada pikiran-pikiran Aristoteles serta membuat penyelidikan secara kualitatif dan fenomena yang terkategori. Sebaliknya, Galileo menetapkan fenomena dan melakukan pengamatan atas dasar kuantitatif. Penekanan yang cermat terhadap perhitungan secara kuantitatif sejak itu menjadi dasar penyelidikan ilmu pengetahuan di masa-masa berikutnya.

Galileo mungkin lebih punya tanggung jawab daripada orang mana pun untuk penyelidikan ilmiah dengan sikap empiris. Dialah, dan bukannya yang lain, yang pertama kali menekankan arti penting peragaan percobaan-percobaan, dia menolak pendapat bahwa masalah-masalah ilmiah dapat diputuskan bersama dengan kekuasaan, apakah kekuasaan itu namanya Gereja atau kaidah dalil Aristoteles. Dia juga menolak keras bersandar pada skema-skema yang menggunakan alasan ruwet dan bukannya bersandar pada dasar percobaan yang mantap. Cerdik cendikiawan abad tengah memperbincangkan bertele-tele apa yang harus terjadi dan mengapa sesuatu hal terjadi, tetapi Galileo bersikeras pada arti penting melakukan percobaan untuk memastikan apa sesungguhnya yang terjadi. Pandangan ilmiahnya jelas gamblang tidak berbau mistik, dan dalam hubungan ini dia bahkan lebih modern ketimbang para penerusnya, seperti misalnya Newton.

Galileo, dapat dianggap orang yang taat beragama. Lepas dari hukuman yang dijatuhkan terhadap dirinya dan pengakuannya, dia tidak menolak baik agama maupun gereja. Yang ditolaknya hanyalah percobaan pembesar-pembesar gereja untuk menekan usaha penyelidikan ilmu pengetahuannya. Generasi berikutnya amat beralasan mengagumi Gahleo sebagai lambang pemberontak terhadap dogma dan terhadap kekuasaan otoriter yang mencoba membelenggu kemerdekaan berfikir. Arti pentingnya yang lebih menonjol lagi adalah peranan yang dimainkannya dalam hal meletakkan dasar-dasar metode ilmu pengetahuan modern.

Blaise Pascal, Fisikawan Perancis


Blaise Pascal (1623-1662) berasal dari Perancis. Minat utamanya ialah filsafat dan agama, sedangkan hobinya yang lain adalah matematika dan geometri proyektif. Bersama dengan Pierre de Fermat menemukan teori tentang probabilitas. Pada awalnya minat riset dari Pascal lebih banyak pada bidang ilmu pengetahuan dan ilmu terapan, di mana dia telah berhasil menciptakan mesin penghitung yang dikenal pertama kali. Mesin itu hanya dapat menghitung.

pascal disimbolkan dengan Pa satuan turunan SI untuk tekanan atau tegangan. Satu pascal setara dengan satu newton per meter persegi. Dalam kehidupan sehari-hari, pascal dikenal karena penggunaannya untuk menyatakan laporan tekanan udara yang umumnya dilaporkan dalam hektopascal (1 hPa = 100 Pa). Satuan ini dinamakan menurut nama Blaise Pascal, seorang matematikawan, fisikawan dan filsuf Perancis.

Definisi 1 Pa
1 Pa = 1 N/m² = 1 (kg·m/s²)/m² = 1 kg/m·s²
1 Pa = 0,01 millibar
1 Pa = 0,00001 bar

sumber: id.wikipedia

Archimedes, Bapak IPA Eksperimental


Archimedes dari Syracusa (sekitar 287 SM - 212 SM) Ia belajar di kota Alexandria, Mesir. Pada waktu itu yang menjadi raja di Sirakusa adalah Hieron II, sahabat Archimedes. Archimedes sendiri adalah seorang matematikawan, astronom, filsuf, fisikawan, dan insinyur berbangsa Yunani. Ia dibunuh oleh seorang prajurit Romawi pada penjarahan kota Syracusa, meskipun ada perintah dari jendral Romawi, Marcellus bahwa ia tak boleh dilukai. Sebagian sejarahwan matematika memandang Archimedes sebagai salah satu matematikawan terbesar sejarah, mungkin bersama-sama Newton dan Gauss.

Penemuannya

Pada suatu hari Archimedes dimintai Raja Hieron II untuk menyelidiki apakah mahkota emasnya dicampuri perak atau tidak. Archimedes memikirkan masalah ini dengan sungguh-sungguh. Hingga ia merasa sangat letih dan menceburkan dirinya dalam bak mandi umum penuh dengan air. Lalu, ia memperhatikan ada air yang tumpah ke lantai dan seketika itu pula ia menemukan jawabannya. Ia bangkit berdiri, dan berlari sepanjang jalan ke rumah dengan telanjang bulat. Setiba di rumah ia berteriak pada istrinya, "Eureka! Eureka!" yang artinya "sudah kutemukan! sudah kutemukan!" Lalu ia membuat hukum Archimedes.

Dengan itu ia membuktikan bahwa mahkota raja dicampuri dengan perak. Dan tukang yang membuatnya dihukum mati.

Penemuan yang lain adalah tentang prinsip matematis tuas, sistem katrol yang didemonstrasikannya dengan menarik sebuah kapal sendirian saja. Ulir penak, yaitu rancangan model planetarium yang dapat menunjukkan gerak matahari, bulan, planet-planet, dan kemungkinan konstelasi di langit.

Di bidang matematika, penemuannya terhadap nilai phi lebih mendekati dari ilmuan sebelumnya, yaitu 223/71 dan 220/70. Archimedes adalah orang yang mendasarkan penemuannya dengan eksperimen. Sehingga, ia dijuluki Bapak IPA Eksperimental.

sumber : id.wikipedia

Albert Einstein, Ilmuwan Terbesar Abad 20


Albert Einstein (14 Maret 1879–18 April 1955) adalah seorang ilmuwan fisika teoretis yang dipandang luas sebagai ilmuwan terbesar dalam abad ke-20. Dia mengemukakan teori relativitas dan juga banyak menyumbang bagi pengembangan mekanika kuantum, mekanika statistik, dan kosmologi. Dia dianugerahiPenghargaan Nobel dalam Fisika pada tahun 1921 untuk penjelasannya tentang efek fotoelektrik dan "pengabdiannya bagi Fisika Teoretis".
Setelah teori relativitas umum dirumuskan, Einstein menjadi terkenal ke seluruh dunia, pencapaian yang tidak biasa bagi seorang ilmuwan. Di masa tuanya, keterkenalannya melampaui ketenaran semua ilmuwan dalam sejarah, dan dalam budaya populer, kata Einstein dianggap bersinonim dengan kecerdasan atau bahkan jenius. Wajahnya merupakan salah satu yang paling dikenal di seluruh dunia.
Pada tahun 1999, Einstein dinamakan "Tokoh Abad Ini" oleh majalah Time. Kepopulerannya juga membuat nama "Einstein" digunakan secara luas dalam iklan dan barang dagangan lain, dan akhirnya "Albert Einstein" didaftarkan sebagai merk dagang.
Untuk menghargainya, sebuah satuan dalam fotokimia dinamai einstein, sebuah unsur kimia dinamai einsteinium, dan sebuah asteroid dinamai 2001 Einstein.

Biografi
Masa Muda dan Universitas
Einstein dilahirkan di Ulm di Württemberg, Jerman; sekitar 100 km sebelah timur Stuttgart. Bapaknya bernama Hermann Einstein, seorang penjual ranjang bulu yang kemudian menjalani pekerjaan elektrokimia, dan ibunya bernama Pauline. Mereka menikah di Stuttgart-Bad Cannstatt. Keluarga mereka keturunan Yahudi; Albert disekolahkan di sekolah Katholik dan atas keinginan ibunya dia diberi pelajaran biola.
Pada umur lima tahun, ayahnya menunjukkan kompas kantung, dan Einstein menyadari bahwa sesuatu di ruang yang "kosong" ini beraksi terhadap jarum di kompas tersebut; dia kemudian menjelaskan pengalamannya ini sebagai salah satu saat yang paling menggugah dalam hidupnya. Meskipun dia membuat model dan alat mekanik sebagai hobi, dia dianggap sebagai pelajar yang lambat, kemungkinan disebabkan oleh dyslexia, sifat pemalu, atau karena struktur yang jarang dan tidak biasa pada otaknya (diteliti setelah kematiannya). Dia kemudian diberikan penghargaan untuk teori relativitasnya karena kelambatannya ini, dan berkata dengan berpikir dalam tentang ruang dan waktu dari anak-anak lainnya, dia mampu mengembangkan kepandaian yang lebih berkembang. Pendapat lainnya, berkembang belakangan ini, tentang perkembangan mentalnya adalah dia menderita Sindrom Asperger, sebuah kondisi yang berhubungan dengan autisme.
Einstein mulai belajar matematika pada umur dua belas tahun. Ada gosip bahwa dia gagal dalam matematika dalam jenjang pendidikannya, tetapi ini tidak benar; penggantian dalam penilaian membuat bingung pada tahun berikutnya. Dua pamannya membantu mengembangkan ketertarikannya terhadap dunia intelek pada masa akhir kanak-kanaknya dan awal remaja dengan memberikan usulan dan buku tentang sains dan matematika.
Pada tahun 1894, dikarenakan kegagalan bisnis elektrokimia ayahnya, Einstein pindah dari Munich ke Pavia, Italia (dekat kota Milan). Albert tetap tinggal untuk menyelesaikan sekolah, menyelesaikan satu semester sebelum bergabung kembali dengan keluarganya di Pavia.
Kegagalannya dalam seni liberal dalam tes masuk Eidgenössische Technische Hochschule (Institut Teknologi Swiss Federal, di Zurich) pada tahun berikutnya adalah sebuah langkah mundur dia oleh keluarganya dikirim ke Aarau, Swiss, untuk menyelesaikan sekolah menengahnya, di mana dia menerima diploma pada tahun 1896, Einstein beberapa kali mendaftar di Eidgenössische Technische Hochschule. Pada tahun berikutnya dia melepas kewarganegaraan Württemberg, dan menjadi tak bekewarganegaraan.
Pada 1898, Einstein menemui dan jatuh cinta kepada Mileva Marić, seorang Serbia yang merupakan teman kelasnya (juga teman Nikola Tesla). Pada tahun 1900, dia diberikan gelar untuk mengajar olehEidgenössische Technische Hochschule dan diterima sebagai warga negar Swiss pada 1901. Selama masa ini Einstein mendiskusikan ketertarikannya terhadap sains kepada teman-teman dekatnya, termasuk Mileva. Dia dan Mileva memiliki seorang putri bernama Lieserl, lahir dalam bulan Januari tahun 1902. Lieserl Einstein, pada waktu itu, dianggap tidak legal karena orang tuanya tidak menikah.


Kerja dan Gelar Doktor
Pada saat kelulusannya Einstein tidak dapat menemukan pekerjaan mengajar, keterburuannya sebagai orang muda yang mudah membuat marah professornya. Ayah seorang teman kelas menolongnya mendapatkan pekerjaan sebagai asisten teknik pemeriksa di Kantor Paten Swiss pada tahun 1902. Di sana, Einstein menilai aplikasi paten penemu untuk alat yang memerlukan pengetahuan fisika. Dia juga belajar menyadari pentingnya aplikasi dibanding dengan penjelasan yang buruk, dan belajar dari direktur bagaimana "menjelaskan dirinya secara benar". Dia kadang-kadang membetulkan desain mereka dan juga mengevaluasi kepraktisan hasil kerja mereka.
Einstein menikahi Mileva pada 6 Januari 1903. Pernikahan Einstein dengan Mileva, seorang matematikawan. Pada 14 Mei 1904, anak pertama dari pasangan ini, Hans Albert Einstein, lahir. Pada 1904, posisi Einstein di Kantor Paten Swiss menjadi tetap. Dia mendapatkan gelar doktor setelah menyerahkan thesis "Eine neue Bestimmung der Moleküldimensionen" ("On a new determination of molecular dimensions") pada tahun 1905 dari Universitas Zürich.
Di tahun yang sama dia menulis empat artikel yang memberikan dasar fisika modern, tanpa banyaksastra sains yang dapat ia tunjuk atau banyak kolega dalam sains yang dapat ia diskusikan tentang teorinya. Banyak fisikawan setuju bahwa ketiga thesis itu (tentang gerak Brownian), efek fotolistrik, dan relativitas khusus) pantas mendapat Penghargaan Nobel. Tetapi hanya thesis tentang efek fotoelektrik yang mendapatkan penghargaan tersebut. Ini adalah sebuah ironi, bukan hanya karena Einstein lebih tahu banyak tentang relativitas, tetapi juga karena efek fotoelektrik adalah sebuah fenomena kuantum, dan Einstein menjadi terbebas dari jalan dalam teori kuantum. Yang membuat thesisnya luar biasa adalah, dalam setiap kasus, Einstein dengan yakin mengambil ide dari teori fisika ke konsekuensi logis dan berhasil menjelaskan hasil eksperimen yang membingungkan para ilmuwan selama beberapa dekade.
Dia menyerahkan thesis-thesisnya ke "Annalen der Physik". Mereka biasanya ditujukan kepada "Annus Mirabilis Papers" (dari Latin: Tahun luar biasa). Persatuan Fisika Murni dan Aplikasi (IUPAP) merencanakan untuk merayakan 100 tahun publikasi pekerjaan Einstein di tahun 1905 sebagai Tahun Fisika 2005.


Gerakan Brown
Di artikel pertamanya di tahun 1905 bernama "On the Motion—Required by the Molecular Kinetic Theory of Heat—of Small Particles Suspended in a Stationary Liquid", mencakup penelitian tentang gerakan Brownian. Menggunakan teori kinetik cairan yang pada saat itu kontroversial, dia menetapkan bahwa fenomena, yang masih kurang penjelasan yang memuaskan setelah beberapa dekade setelah ia pertama kali diamati, memberikan bukti empirik (atas dasar pengamatan dan eksperimen) kenyataan pada atom. Dan juga meminjamkan keyakinan pada mekanika statistika, yang pada saat itu juga kontroversial.
Sebelum thesis ini, atom dikenal sebagai konsep yang berguna, tetapi fisikawan dan kimiawan berdebat dengan sengit apakah atom itu benar-benar suatu benda yang nyata. Diskusi statistik Einstein tentang kelakuan atom memberikan pelaku eksperimen sebuah cara untuk menghitung atom hanya dengan melihat melalui mikroskop biasa. Wilhelm Ostwald, seorang pemimpin sekolah anti-atom, kemudian memberitahu Arnold Sommerfeld bahwa ia telah berkonversi kepada penjelasan komplit Einstein tentang gerakan Brown.